7 resultados para Fetal hemoglobin

em DigitalCommons@The Texas Medical Center


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Enforced expression of Tbx1 in fetal thymic epithelial cells antagonizes thymus organogenesis Kim T. Cardenas The thymus and parathyroid glands originate from organ-specific domains of 3rd pharyngeal pouch (PP) endoderm. At embryonic day 11.5 (E11.5), the ventral thymus and dorsal parathyroid domains can be identified by Foxn1 and Gcm2 expression respectively. Neural crest cells, (NCCs) play a role in regulating patterning of 3rd PP endoderm. In addition, pharyngeal endoderm influences fate determination via secretion of Sonic hedgehog (Shh), a morphogen required for Gcm2 expression and generation of the parathyroid domain. Gcm2 is a downstream target of the transcription factor Tbx1, which in turn is positively regulated by Shh. Although initially expressed throughout pharyngeal pouch endoderm, Tbx1 expression is excluded from the thymus-specific domain of the 3rd PP by E10.5, but persists in the parathyroid domain. Based on these observations, we hypothesized that Tbx1 expression is non-permissive for thymus fate specification and that enforced expression of Tbx1 in the fetal thymus would impair thymus development. To test this hypothesis, we generated knock-in mice containing a Cre-inducible allele that allows for tissue-specific Tbx1 expression. Expression of the R26iTbx1 allele in fetal and adult thymus using Foxn1Cre resulted in severe thymus hypoplasia throughout ontogeny that persisted in the adult. Thymic epithelial cell (TEC) development was impaired as determined by immunohistochemical and FACS analysis of various differentiation markers. The relative level of Foxn1 expression in fetal TECs was significantly reduced. TECs in R26iTbx1/+ thymi assumed an almost universal expression of Plet-1, a marker associated with a TEC stem/progenitor cell fate. In addition, embryonic R26iTbx1/+ mice develop a perithymic mesechymal capsule that appears expanded compared to control littermates. Interestingly, thymi from neonatal and adult R26iTbx1/+ but not R26+/+ mice were encased in adipose tissue. This thymic phenotype also correlated with a decrease in thymocyte cellularity and aberrant thymocyte differentiation. The results to date support the conclusion that enforced expression of Tbx1 in TECs antagonizes their differentiation and prevents normal organogenesis via both direct and indirect effects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Placental formation and genomic imprinting are two important features of embryonic development in placental mammals. Genetic studies have demonstrated that imprinted genes play a prominent role in regulating placental formation. In marsupials, mice and humans, the paternally derived X chromosome is preferentially inactivated in the placental tissues of female embryos. This special form of genomic imprinting may have evolved under the same selective forces as autosomal imprinted genes. This chromosomal imprinting phenomenon predicts the existence of maternally expressed X-linked genes that regulate placental development.^ In this study, an X-linked homeobox gene, designated Esx1 has been isolated. During embryogenesis, Esx1 was expressed in a subset of placental tissues and regulates formation of the chorioallantoic placenta. Esx1 acted as an imprinted gene. Heterozygous female mice that inherit an Esx1-null allele from their father developed normally. However, heterozygous females that inherit the Esx1 mutation from their mother were born 20% smaller than normal and had an identical phenotype to hemizygous mutant males and homozygous mutant females. Surprisingly, although Esx1 mutant embryos were initially comparable in size to wild-type controls at 13.5 days post coitum (E13.5) their placentas were significantly larger (51% heavier than controls). Defects in the morphogenesis of the labyrinthine layer were observed as early as E11.5. Subsequently, vascularization abnormalities developed at the maternal-fetal interface, causing fetal growth retardation. These results identify Esx1 as the first essential X-chromosome-imprinted regulator of placental development that influences fetal growth and may have important implications in understanding human placental insufficiency syndromes such as intrauterine growth retardation (IUGR). ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction. Shoulder dystocia is a serious complication of vaginal birth, with an incidence ranging from 0.15% to 2.1% of all births. There are approximately 4 million births per year in the United States and shoulder dystocia will be experienced by approximately 20,000 women each year. Although studies have been reported on shoulder dystocia, few studies have addressed both maternal and fetal risk factors. The purpose of this study was to identify maternal and fetal risk factors for shoulder dystocia while proposing factors that could be used to predict impending shoulder dystocia. ^ Material and methods. Articles were reviewed from Medline Pubmed using the search phrase "Risk factors of shoulder dystocia" and Medline Ovid using the search words "Dystocia", "Shoulder" and "Risk factors". Rigorous selection criteria were used to identify articles to be included in the study. Data collected from identified articles were transferred to STATA 10 software for trend analysis of the incidence of shoulder dystocia and the year of publication and a pair wise correlation was also determined between these two variables. ^ Results. Among a total of 343 studies identified, only 20 met our inclusion criteria and were retained for this review. The incidence of shoulder dystocia ranged from 0.07% to 2% and there was no particular trend or correlation between the incidence of shoulder dystocia and year of publication between 1985 and 2007. Pre-gestational and gestational diabetes, postdatism, obesity, birth weight > 4000g and fundal height at last visit > 40cm were identified as major risk factors in our series of studies. ^ Conclusion. Future strategies to predict shoulder dystocia should focus on pre-gestational and gestational diabetes mellitus, postdatism, obesity, birth weight > 4000g and fundal height at last visit > 40cm. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: To examine the effect of obesity and gestational weight gain on heart rate variability (HRV), oxygenation (HbO 2 and SpO2), hemoglobin A1c (HbA1c) and the frequency of pregnancy complications in obese (O) and non-obese (NO) women.^ Design: The study was an observational comparison study with a repeated measures design. ^ Setting: The setting was a low risk prenatal, university clinic located in a large southeastern metropolitan city. ^ Sample: The sample consisted of a volunteer group of 41 pregnant women who were observed at the three time points of 20, 28, and 36 weeks gestation. ^ Analysis: Analysis included general linear modeling with repeated measures to test for group differences with changes over time on vagal response, HbA1c, and oxygenation. Odds ratios were computed to compare the frequency of birth outcomes. ^ Findings: The interaction effect of time between O and NO women on HbO2 was significant. The mean HP, RSA, and HbO2 changed significantly over time within the NO women. The mean HbA 1c increased significantly over time within the O women. Women with excess gestational weight gain had significantly lower heart period than women with weight gain within the IOM recommendations. Obese women were more likely to have Group B streptococcal infections, gestational hypertension, give birth by cesarean or instrument assistance, and have at least one postnatal event. ^ Conclusions: Monitoring HRV, oxygenation, and HbA1c using minimally invasive measures may permit early identification of alterations in autonomic response. Implementation of interventions to promote vagal tone may help to reduce risks for adverse perinatal outcomes related to obesity. Future studies should examine the effect of obesity on the vagal response and perinatal outcomes. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diabetes mellitus occurs in two forms, insulin-dependent (IDDM, formerly called juvenile type) and non-insulin dependent (NIDDM, formerly called adult type). Prevalence figures from around the world for NIDDM, show that all societies and all races are affected; although uncommon in some populations (.4%), it is common (10%) or very common (40%) in others (Tables 1 and 2).^ In Mexican-Americans in particular, the prevalence rates (7-10%) are intermediate to those in Caucasians (1-2%) and Amerindians (35%). Information about the distribution of the disease and identification of high risk groups for developing glucose intolerance or its vascular manifestations by the study of genetic markers will help to clarify and solve some of the problems from the public health and the genetic point of view.^ This research was designed to examine two general areas in relation to NIDDM. The first aims to determine the prevalence of polymorphic genetic markers in two groups distinguished by the presence or absence of diabetes and to observe if there are any genetic marker-disease association (univariate analysis using two by two tables and logistic regression to study the individual and joint effects of the different variables). The second deals with the effect of genetic differences on the variation in fasting plasma glucose and percent glycosylated hemoglobin (HbAl) (analysis of Covariance for each marker, using age and sex as covariates).^ The results from the first analysis were not statistically significant at the corrected p value of 0.003 given the number of tests that were performed. From the analysis of covariance of all the markers studied, only Duffy and Phosphoglucomutase were statistically significant but poor predictors, given that the amount they explain in terms of variation in glycosylated hemoglobin is very small.^ Trying to determine the polygenic component of chronic disease is not an easy task. This study confirms the fact that a larger and random or representative sample is needed to be able to detect differences in the prevalence of a marker for association studies and in the genetic contribution to the variation in glucose and glycosylated hemoglobin. The importance that ethnic homogeneity in the groups studied and standardization in the methodology will have on the results has been stressed. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Departmento de Arica in northern Chile was chosen as the investigation site for a study of the role of certain hematologic and glycolytic variables in the physiological and genetic adaptation to hypoxia.^ The population studied comprised 876 individuals, residents of seven villages at three altitudes: coast (0-500m), sierra (2,500-3,500m) and altiplano (> 4,000m). There was an equal number of males and females ranging in ages from six to 90 years. Although predominantly Aymara, those of mixed or Spanish origin were also examined. The specimens were collected in heparinized vacutainers precipitated with cold trichloroacetic acid (TCA) and immediately frozen to -196(DEGREES)C. Six variables were measured. Three were hematologic: hemoglobin, hematocrit and mean cell hemoglobin concentration. The three others were glycolytic: erythrocyte 2,3-diphosphoglycerate (DPG), adenosine triphosphate (ATP) and the percentage of phosphates (DPG + ATP) in the form of DPG.^ Hemoglobin and hematocrit were measured on site. The DPG and ATP content was assayed in specimens which had been frozen at -196(DEGREES)C and transported to Houston. Structured interviews on site provided information as to lifestyle and family pedigrees.^ The following results were obtained: (1) The actual village, rather than the altitude, of examination accounted for the greatest proportion of the variance in all variables. In the coast, a large difference in levels of ionic lithium in the drinking water exists. The chemical environment of food and drink is postulated to account, in part, for the importance of geographic location in explaining the observed variance. (2) Measurements of individuals from the two extreme altitudes, coast and altiplano, did not exhibit the same relationship with age and body mass. The hematologic variables were significantly related to both age and body build in the coast. The glycolytic variables were significantly related to age and body mass in the altiplano. (3) The environment modified male values more than female values in all variables. The two sexes responded quite differently to age and changes in body mass as well. The question of differing adaptability of the two sexes is discussed. (4) Environmental factors explained a significantly higher proportion of total variability in the altiplano than in the coast for hemoglobin, hematocrit and DPG. Most of the ATP variability at both altitudes is explained by genetic factors. ^